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1. INTRODUCTION

In contrast to classical systems, quantum physical
systems possess a specific feature manifested in a much
larger variety of their properties depending on the
method of their application. Theoretically, this is
reflected in the corresponding variety of aspects in
which an apparently the same (in the classical limit)
problem is considered. Therefore, it is not surprising
that it necessary to return from time to time to analysis
of the same problems from a different angle of view.
Experience (in particular, gained in discussion of the
Einstein–Podolsky–Rosen paradox [2]) shows that
such a revision may have a practical yield (in the exam-
ple considered here, this is the development of quantum
cryptography [3]).

Quantum measurement is one of fundamental prob-
lem in quantum theory; in a discussion of this problem,
a large number of different aspects can be traced [4–7].
In the contents of our study, we can single out the fol-
lowing two aspects pertaining to the possibility of dis-
playing information contained in quantum systems by
classical systems. We are speaking, first, of the theoret-
ical possibility of obtaining absolutely precise results
of measurements for jointly measurable quantities [8]
and second, of the possibility of obtaining approximate
results (correct to within the minimal quantum indeter-
minacy) of measurement for jointly immeasurable
quantum variables [9] (see [10] for the discussion of
this problem using a more general mathematical tech-
nique and for the review of the literature).

The assumption concerning the classical nature of
the measuring system appears as quite natural at the
stage of mastering the foundations of quantum theory,
at which experimental intrusion in a quantum object for
extracting information from it appeared as a rough pro-
cess. However, this limitation should be revised, in our
opinion, at present, when series of reversible quantum-

mechanical transformations are being freely carried out
in quantum systems of various types and quantum sys-
tems such as photons are frequently used in the proto-
cols of quantum cryptography. Namely, in the general
case, we should identify a meter (subsequently referred
to just as meter) with an essentially quantum object,
which gives the result of measurement in the quantum-
mechanical or classical form depending on its sur-
roundings; this must be reflected in the specific form of
the transformation which is actually performed in the
object–meter system. This idea is expressed in the most
compact form by introducing the 

 

entangling

 

 measure-
ment transformation [11]. In limiting cases, this trans-
formation is reduced to either the standard quantum
measurement with a classical representation of the
result or to a unitary transformation in the object–meter
system, for which the result of measurement can be pre-
sented in the purely quantum entanglement form estab-
lishing the 100%-correlation between the singled-out
variables of the object and of the meter.

The preferred position of entangling measurements
among a large number of other transformations is due
to the fact that such measurements make it possible to
distribute an object among a large number of quantum
systems without disturbing the singled-out set of states
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. In the limiting case of a purely coherent measure-
ment, such a transformation for a fixed initial state 
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of the meter represents the initial basis states 
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 of the
object in terms of doubling states 
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 of the object–
meter system, while arbitrary linear combinations
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〉
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 are represented by analogous linear combi-
nations of doubling states. On the other hand, coherent
quantum relations between wave functions of the object
are now transferred to the same relations in the object–
meter system (i.e., such relations are not conserved in
the object since essentially quantum information can-
not be doubled). A standard quantum measurement is
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accompanied by additional loss of the initial phase rela-
tions. Thus, the concept of quantum measurements is
associated not with the classical nature of the physical
representation of extracted information, but with a
more primary concept of classicism, viz., the possibil-
ity of its unlimited reproduction. Such an approach
makes it possible to consider the processes of extrac-
tion and transformation of quantum information from
unified positions suitable for classical as well as quan-
tum-mechanical instruments.

In addition to the concept of entangling measure-
ment as the establishment of one-to-one correspon-
dence between sets of classically compatible states of
the object–meter quantum systems, we can also intro-
duce generalized types of measurement analogously to
classical instruments. It was shown in [1] that we can
single out two main versions of measurement as the
establishment of correspondence with the help of the
classical information index: (i) fuzzy measurement as
the establishment of the correspondence between a
classically compatible set of states of the object and an
incompletely distinguishable set of quantum states of
the meter (in fact, this is the simplest special case of so-
called “fuzzy” measurements [12, 13] and (ii) a par-
tially destructive quantum measurement as the estab-
lishment of the correspondence between an incom-
pletely distinguishable set of states of the object and a
classically compatible set of states of the meter.

Examples of such generalized measurements of
two-level quantum systems were considered in [1].
However, it would also be interesting to consider mea-
surements of this type for systems with infinitely
dimensional spaces of states, when dynamic variables
with continuous values are to be measured. In particu-
lar, measurements with the help of a classically com-
patible set of coordinates of two oscillator (e.g., pho-
ton) modes playing the role of a meter of two classical
incompatible quadrature components of a mode play-
ing the role of the object are of special interest in view
of the existence of a natural simple correspondence
between the sets of canonical variables in the object–
meter system. In this case, we can expect that the sim-
plicity of the correspondence being established in such
measurements is the ground for its possible experimen-
tal implementation (e.g., using the methods of nonlin-
ear optics). In addition, measurements of this type
reveal the fundamental properties of the process of
extraction of information from quantum systems
(beginning from quantum limitations on the potential
precision of measurements and ending with quantita-
tive characteristics of dequantization noise) in its most
general and concentrated form.

2. TRANSFORMATION OF CONTINUOUS 
MEASUREMENT OF A CANONICAL SET

OF QUANTUM VARIABLES

The simplest and most fundamental example of
measurement of continuous variables is the measure-

ment of electron coordinate , which is considered in
almost all textbooks of quantum mechanics. It is well
known that only this half of the complete set of

dynamic canonical variables  = ( , ) (

 

T

 

 is the
symbol of matrix transposition) of a quantum system
with a single degree of freedom in quantum theory that
can be measured exactly (in contrast to the classical
theory).

To establish a more complete relation between the
quantum and classical theories, we must also consider
the measurement that leads to the minimal possible
error for both canonical variables  and ensures their
precise measurement in the semiclassical limit 

 

�

 

  0.
Measurements of this type are not only possible [9], but
also optimal under corresponding conditions [10, 14,
15]. Such measurements are based on the simple fact
that a quantum system with a doubled number of
degrees of freedom contains the same number of simul-
taneously measurable coordinate operators as their
number in the complete set of canonical variables of the
object. This type of measurements naturally emerge in
the approach [1] including the generalization to essen-
tially quantum-mechanical meters based on the concept
of entangling measurement and on the rejection of the
requirement concerning a nondestructive form of the
measurement at the quantum level of accuracy.

 

2.1. Superoperator of a Partly Destructive 
Measurement

 

In compact form, a measurement can be described
by a superoperator mapping density matrices  of the

object into density matrices  of the object–meter
system. Since it is expedient to assume that the initial
state of the meter is fixed in the form of a pure state
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, the complete transformation in the
object–meter system, which can be realized in various
equivalent ways, is hence immaterial.

The superoperator describing in the general case a
partly destructive entangling measurement of a set of
nonorthogonal states 
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 of the object with the help of
a set of orthogonal (i.e., classically distinguishable)
states 

 

|α〉
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 of the meter, has the form

(1)

Here, 
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 is the entanglement matrix satisfying the con-
ditions 
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 0 and controlling the degree
of dequantization of the results of measurement due to
the interaction of the meter with dephasing system 
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(in the simplest case of entanglement mapped by an
entanglement matrix of the form 
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and defines the corresponding positive operator-valued
measure (POVM)

(2)

The limiting cases 
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αβ

 

 = 

 

δ

 

αβ

 

 and 
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αβ

 

 = 1 describe the
standard projective measurement corresponding to
complete dephasing of the states being measured, as
well as the reversible isometric map of the Hilbert
space of the object into the space of states of the object–
device corresponding to the absence of dephasing.

In the case of an orthogonal set of states 
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,
this superoperator transforms the initial states of the
given type into states 
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|α〉
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 of the object–meter sys-
tem (i.e., is nondestructive). On the other hand, the non-
orthogonality of the states being measured makes their
preservation impossible and accordingly, assigned to
the partly destructive nature of measurement. It can
easily be seen that the subalgebras of classically com-
patible states and of dynamic variables corresponding
to them are not distorted asymptotically (in the pres-
ence of the corresponding small nonclassicality param-
eter); i.e., the given measurement considered at classi-
cal level is precise and nondestructive.

For simplicity, let us confine our analysis to a one-
dimensional (unimodal) object, which corresponds to
the following commutator in canonic variables:

Considering a uniform mesh with points 
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on a plane with coordinates 
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, we choose as measur-
able states 
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 in expression (1) the states obtained by

displacement transformation 
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in this case, U–1(Xα) U(Xα) =  + Xα. As the basis
state |0)A, we can choose a state characterized by the
projector

(4)

obtained as a limit of the Gaussian density matrix with
a quadratic form defining in the general case a com-
pressed state with a rotated dispersion ellipse.

In this case, the multiplicity of states must be chosen
in the form

(5)

where dXα describes the cell volume per state |α)A. It is
well known for |α)A in the form of coherent states [10,
17], the set of operators (2) in this case indeed corre-
sponds to the POVM in the limit dXα  0 and, hence,
transformation (1) defines the corresponding general-
ized measurement with the results of measurement in
the form of classically distinguishable (orthogonal)
states |α〉B. Thus, the transformation of continuous mea-
surement of a set of canonical quantum variables is
defined as a limiting transition to an infinitely dense
mesh. The corresponding mapping is illustrated in the
figure.

To establish the correspondence between variables

 of the object and corresponding commuting vari-

ables  on the basis of the mapping of quantum states
described above, we must take into account the repre-
sentation

(6)

for discrete readings of the meter. In the limit of an infi-
nitely dense mesh of states, this expression can be
described by generalized matrix elements of the form

( )X'X" = (X' – X)δ(X'' – X)dX. In fact, measure-

ment (1) for the above characteristics differs from those
considered in [9, 10, 12, 14] only in one new feature,
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Fig. 1. Mapping of elementary states in the course of a generalized measurement. The quantum indeterminacy in the values of coor-
dinates and momenta, corresponding to states |α)A of the object being measured, which are mapped by the classically distinguish-
able states |α〉B of the meter, is indicated.
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viz., essentially quantum-mechanical representation of
output data in the general case, which is manifested in
the presence of entanglement matrix Rαβ differing from
unity.

The measurement considered here is entirely nonse-
lective to translations in the phase space of canonic

variables ; in this respect, it is analogous to a nonse-
lective partly destructive measurement in a two-level
system [1]. However, in contrast to the latter measure-
ment, which is invariant to any unitary transformation
of the initial state, it is still selective to, for example,
operation of compression or rotation of the dissipation
ellipse of the initial state, which are controlled by qua-
dratic form Q0.

2.2. Quantitative Characteristics of Measurement

First, we calculate the mean square error of mea-
surement for initial state  = |α0)(α0 |,

(7)

for parameters of this state, which characterizes the
“semiclassical” properties of the measuring channel.
Here, Q is the quadratic form matrix taking into
account the contributions from the components of the
vector being measured. In such an approach, we in fact
assess the informativity of the semiclassical informa-
tion channel α0   = TrA�  realized with the
help of measurement �. Another measure of informa-
tivity is the Holevo information [18].

Substituting the Gaussian density matrix in the form

 = exp[Γ – (  – )TQ0(  – )/ε] for ε  0
as the initial state into formula (1) (this matrix corre-
sponds to vacuum |0) coherently displaced by transfor-

mation U( ), |0) = Tr|Q0C | |0)) and using

the standard technique for transforming Gaussian oper-
ators [19], we obtain the Gaussian density with scatter-
ing matrix 2K0 for distribution Xα, which is twice as
large as the vacuum matrix,

and, accordingly,

For quadratic forms with matrices Q = Q0, which

correspond to Hamiltonian  = /2m + mω2 /2 of
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the same harmonic oscillator, this expression leads to
the result ∆S = Tr |QC | = �ω that implicitly appears in
[10]; i.e., quadratic indeterminacy is equal to a doubled
energy of vacuum fluctuations. The doubling is of fun-
damental importance and is due to the addition of

dequantization noise contained in variables  and
independent of these fluctuations to the initial quantum

fluctuations of variables  in state |α0)A.

The mean standard error for canonical operators 
of the object,

(8)

which is observed after the measurement has been per-
formed, characterizes the measurement as a quantum
channel providing information on classically incompat-
ible quantum variables of the object. Analogous calcu-
lation for state |α0)(α0 | of the object taking into

account the invariance of difference operator  – 
and its diagonal form in states |α〉B gives

which is half the value of the error for the meter as a
semiclassical channel.

This error is equal to the minimal possible error

compatible with noncommutativity of operators  and,

accordingly,  – . Thus, we can state that measure-
ment (1) not only provides an effective estimate for
parameters of a coherent Gaussian state, but also can be
treated as a method for obtaining an optimal estimate of

the canonical variables  themselves of a quantum
object, irrespective of the form of entanglement matrix
R and, hence, the degree of coherence of the transfor-
mation being carried out.

The partly destructive form of measurement (1) is
manifested in the change in the initial state upon map-
ping    = �A , where �A = TrB� is the
superoperator of transformation of states of the object
irrespective of the result of measurement. In the case of
a two-level object, the superoperator can be expressed
in terms of the vectors of quasi-spin operators  in the

form �A +  �  [1]. The destructive form of the

measurement for initial state  =  is mani-

fested in its depolarization s  . In the case under
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investigation, we have �A = |α)A(α|A(α|A � |α)A;

for initial state ρA = |0)A(0|A, we obtain a distorted state
in the form

where symbol � indicates Wigner ordering sym-
metric in operators  and . The correlation matrix
corresponding to this Gaussian matrix is 3K0. It can
easily be seen that perturbation introduced by the mea-
surement can be reduced to tripling the scattering
matrix (K0  3K0) for displaced initial states of the
form |α0)A also. In the case of the arbitrary Gaussian
states  with correlation matrix K and mean value of

X0 = 〈 〉, the distorted state is characterized by the
change in correlation matrix K  K + 2K0 with the
conserved mean value in accordance with the following
relation that holds for the correlation Gaussian density
matrices:

For a purely coherent state,  = |α0)(α0 | corre-
sponds to 3K0.

3. DEQUANTIZATION NOISE

Taking into account the isometric nature of transfor-
mation � for Rαβ ≡ 1, we obtain identity Trf[� ] =

Trf[ ] for an arbitrary scalar function f, which shows
that the entropy of the object–meter system after such a
completely coherent measurement coincides with the
initial entropy of the object and is zero in the case of its
pure state corresponding to density matrix K = K0:
SAB[K]  = 0. Since states |α)A are not orthogonal,
these states are coded in a complex combination of
orthogonal two-component states |α)A|α〉B. The explicit
form of mapping A  A + B of quantum information
is defined by corresponding expressions for overfilled
basis

As we pass to the standard measurement, two-par-
tite states |α)A|α〉B acquire an additional degree of free-
dom, which corresponds to the independent orthogonal
states |α〉D of the dephasing subsystem (shot noise).
Consequently, the entropy of the object–meter system
reflects independent dequantization fluctuations and,
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|α )A νβ β|α )A|β )A β| 〉B.(
β
∑

hence, increases indefinitely upon a decrease in the
mesh volume of the measuring net.

To calculate shot noise introduced by the dephasing
subsystem upon partial dequantization of the result of
measurement, we consider the joint density matrix

(9)

For Rαβ ≡ 1, this matrix defines an isometric map of the
input density matrix, and their entropies coincide,
which corresponds to the absence of dequantization
noise. On the other hand, inequality Rαβ ≠ 1 describes
the selection of classically compatible states |α〉B of the
meter coherently coupled for Rαβ ≡ 1 by the dephasing
subsystem. The phase indeterminacy in the object–
meter system introduced in this way violates the coher-
ence of mapping and, hence, leads to dequantization of
the resultant set of states. The only measure of dequan-
tization noise introduced into the system is the corre-
sponding increment of entropy as compared to a com-
pletely coherent measurement:

(10)

Let us calculate ∆Sd for semiclassical density matri-
ces  of the object, which can be defined as follows:

(11)

where w(Xα) defines the Wigner density of probability
distribution, which slowly varies on the scale of an ele-
mentary phase cell with a volume of 2π�. The corre-
sponding entropy is calculated taking into account the

relation ( )n = [w(Xα)2π�]n – 1w(Xα)dXα(α|β) follow-
ing from the completeness condition (2) of states |α)
and expression (5) and is defined by the following
semiclassical expression, which is well known in statis-
tical physics:

(12)

Here, phase volume 2π� maps the quantum indistin-
guishability of states α, which is taken into account by
factor (α|β) in representation (11).

Calculating entropy S[ ] taking into account
dephasing Rαβ, we consider the case of intense dephas-
ing, in which off-diagonal matrix elements Rαβ decay as
a function of difference Xα – Xβ at a much higher rate
than on the scale of elementary phase volume 2π� cor-
responding to quantum nonorthogonality factor (α|β).
In this case, we can disregard the last factor in the
expression for joint density matrix  and proceed
from the expression

ραβ
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This approximation enables us to obtain an asymptotic

estimate S[ ] = – (X)vc]w(X)dX, which is

analogous to the above estimate, but contains coher-
ence volume vc corresponding to Rαβ instead of the ele-
mentary quantum volume. This estimate corresponds to
the following expression for the entropy increment,

(13)

which is valid for vc � 2π� and takes into account the
possible dependence of the coherence volume vc on
phase variables X in the general case. This heuristic
estimate becomes rigorous if we assume a special struc-
ture of entanglement matrix Rαβ = (α|β)v, where the
scalar product reproduces the same product for coher-
ent states, but its relation with operator algebra differs
in that the Planck constant � is replaced by vc/2π. This
assumption does not contradict in any way the funda-
mentals of quantum theory, since the only conditions
met by matrix Rαβ is its positive value and equality of
diagonal elements to unity.

Thus, dequantization of measured information is
accompanied by the introduction of dequantization
noise; in the limit of standard measurement, the contri-
bution of such noise to the total quantum entropy of the
object–meter system tends to infinity. However, this
noise does not affect the precision of measurement,
since readings Xα of the meter do not asymptotically
distinguish potentially distinguishable states |α〉B in an
infinitely small range of values of Xα ∈ V, which corre-
sponds to an infinitely large number of coherence vol-
umes vc  0. The error of measurement is limited in
this case only by the intrinsic quantum indeterminacy

of variables  being measured.

4. CONCLUSIONS

Thus, as applied to the measurement of continuous
variables, general definition of partly destructive entan-
gling quantum measurement [1] for a canonical set of
variables being measured gives a generalization of
measurement of the noncommuting quantum variables
discussed earlier [9, 10, 14, 15] to the case of a quan-
tum-mechanical meter extracting resultant information,
not necessarily in classical form, but in a form which
permits its unlimited reproduction.

In the type of measurement considered here, the dis-
tortion of the initial states of the object is associated
with the representation of quantum-mechanically
incompatible variables and corresponding sets of non-
orthogonal states in classical form.

Dequantization of output information leads to intro-
duction of dequantization noise associated with the

ρ̂AB [wlog∫

∆Sd
2π�
v c

----------⎝ ⎠
⎛ ⎞ w X( )log X ,d∫=

X̂

interaction of the object and the meter with the dephas-
ing subsystem. In the limit of standard completely
dequantizing measurement, this noise leads to an infi-
nitely large increase in the total quantum entropy in the
object–meter system without affecting the quality of
measurement.
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